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ABSTRACT 

The relationship between the number of solutions  to the 

complementarity problem,   the right-hand constant vector    q 

and the matrix   M    is explored.    The main results proved In 

this work are summarized below. 

The number of solutions  to the complementarity problem 

is finite for all    q e R      if and only if all the principal 

subdetermlnants of    M    are nonzero.    The necessary and 

sufficient condition for this solution to be unique for each 

q e R      is that all principal subdetermlnants of    M    are 

strictly positive.    When    M > 0  ,  there is at least one 

complementary feasible solution for each    q c R      if and 

only if all the diagonal elements of   M    are strictly 

positive; and,  in this case,  the number of these solutions 

is an odd number whenever    q    is nondegenerate. * If all 

principal subdetermlnants of   M    are nonzero, then the 

number of complementary feasible solutions has the same 

parity (odd or even) for all    q e R     which are nondegenerate. 

Also,  if the number of complementary feasible solutions is a 

constant 'ar each    q c R    ,  then that constant is equal to 

one and    M   is a P-matrlx. 

Most of the proofs are based on mathematical Induction. 

Counterexamples are given to show that the theorems fall if 

any of the hypotheses are not satisfied. 
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ON THE NUMBER OF SOLUTIONS TO THE COMPLEMENTARY 

QUADRATIC PROGRAMMING PROBLEM 

by 

Katta G. Murty 

. 

1.  INTRODUCTION: 

1.1 The complementary quadratic programming problem is that of finding 

column vectors w ■ (w,) e R  and z • (z.) e R  satisfying 

w - Mz + q 

T 
w>0,z>0,wz-0 

(1) 

where M • (m. ) is a given n x n square matrix and q •= (q.)  Is a 

T n 
given n x 1 column vector and w  denotes the transpose of w . R  Is 

the n-dlmensional real Euclidean space. 

1.2 Because w , z are nonnegative, the constraint 

T 
w z y w.z. - 0 =t> w.z. ■ 0 

1-1 1 i        i i 
for each i - 1, ..., n 

Thus If one of the variables in the pair w. , z. Is positive, the other 

T 
should be zero. Hence the constraint w z ■ 0 will be referred to as the 

oomplementarity condition  and the problem Is sometimes known as the 

ocmplementopity problem of order   n . 

1.3 Consider the quadratic programming problem 

Minimize w z 

Subject to w - Mz - q 

w > 0 , z > 0 . 

If (1) has any solution (w;z) then that solution also solves the 

-- ■ --■ ■■ ■ 
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quadratic programming problem.  Conversely if the minimum value for the 

objective function in the quadratic programming problem is zero, then any 

optimal soluclon to it also solves (1). 

Thus solving (1) is equivalent to finding out whether the minimum 

objective value in the above quadratic program is zero or strictly positive. 

Hence the problem (1) Is known as the aomplementary quadratic programing 

problem. 

1.4 Cottle and Dantzig [1] and Lemke [7], [8] have shown that all the 

problems in linear programming, convex quadratic programming and also the 

problem of finding a Nash equilibrium point of a bimatrlx game, can be posed 

In the form of (1). For other applications of (1) see Scarf [13]. Lemke 

and Howson [7], [9] have developed a simple algorithm for solving (1) 

which is based on pivot steps. 

Lemke [7], Cottle and Dantzig [1] have shown that (1) has a solution if 

all the principal determinants of M are positive or If M is a nonnigative 

matrix with positive elements in the principal diagonal. Lemke [7] has also 

given sufficient conditions on M and q under which the number of solutions 

to (1) is finite. 

In this paper our main Interest is to examine the relationship of the 

number of solutions to (1) to the properties of the given matrices M and 

q . The motivation for this problem was provided by Gale when he asked me 

to try and prove or construct counterexamples to the following conjectures: 

(«) M Is a P-matrix if and only if the complementarity problem 

has a unique solution for each q e'R . 

(b) M > 0 , is a Q-natrix if and only if m^ > 0 for all 

1 • 1, ...»n. 

. 
- . ■ 
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(c)    If    M    is a Q-tnatrix,  the complementarity problem has an odd 

number of solutions whenever    q    Is nondegenerate with respect 

to    M  . 

The result of the investigation  is  the present work. 

»   j 



2.  NOTATION AND PRELIMINARIES; 

2.1 If A Is any matrix, A  denotes Its transpose. A.  denotes the 
X • 

1-th row vector of A and A . denotes the J-th column vector of A . I 
•j 

denotes the unit matrix. 

2.2 A square matrix M is called a P-matrix if all Its principal sub- 

determinants are strictly positive. The square matrix M is called 

nondegenerate  if every matrix A obtained by taking A . to be either 

M . or I . for each J • lt ..., n is nonslngular. An equivalent 
•J     'j 

definition Is that M is a nondegenerate matrix If and only if all its 

principal subdeterminants are nonzero. M is called a Q-matrtx if problem (1) 

haa a solution for all q e R . 

2.3 Lot A be any finite set of column vectors in R . The convex 

cone generated by the column vectors in A is denoted by Pos {A} . Thus 

x c Pos {A} if and only If x can be expressed as a nonnegative linear 

combination of the column vectors in A . 

2n 2.4 Suppose   L(q)C R       is the linear manifold determined by the 

linear equality constraints 

w - Ms - q 

w c R    , z e R 
(2) 

without any nonnegativity constraints. The vector (---j c L(q) if and 

only If It satisfies (2). Any (—-) e L(q) Is called a solution. For 

convenience we will write down the vector (---I e R   as (wjz) . 

2.5 The convex polyhedron K(q) C L(q) is the set of all feasible 

solutions    (WJZ) which satisfy 

mm 
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w - Hz = q 

w > 0  ,   z  >  0 
(3) 

2.6 A basic feasible solution is a feasible solution    (wjz)  c K(q) 

such that the column vectors in (3) of the variables    w      and    z      which 

are strictly positive, are linearly independent.    Every basic feasible 

solution is an extreme point of the convex polyhedron   K(q)    and vice versa. 

2.7 A complementary feasible solution is a feasible solution 

T (wjz)  £ K(q)    which satisfies the complementarity condition    w z ■ 0 . 

A complementary feasible solution Is a solution to (1) and vice versa. 

2.8 For each    1-1 n    the variables   w.  , z      constitute a 

complementary pair and each of the variables In the pair Is the complement 

of the other.     In the system (1) the column vector    I  .    Is associated with 
•j 

the variable, w  and -M   Is associated with z . Thus the pair 
j       O j 

(I . , -M .) are the J-th complementary pair of column vectors In (1). 

2.9 A complementary set of column vectors  Is a set of column vectors 

{A . , J • 1 n} such that A .  Is either I . or -M , for each 
•J O O      «J 

J ■ 1, ...» n . Thus any set of column vectors containing exactly one vector 

from each complementary pair of vectors Is a complementary set of column vectors. 

The corresponding set of variables Is called a complementary set of variables. 

Hence there are 2  complementary sets of column vectors. 

2.10 Each solution to (1) represents q as a nonnegative linear 

combination of some complementary set of column vectors. 

Conversely if {A .} Is a complementary set of column vectors and If 
•J 

q c Pos {A . , J ■ ls ..., n) 
•J 

i.e., q " I BJA . where ß. > 
j-1 2  '3 3 " 

for each J 

■MW*» 

^Mhfc—i—— 



then a solution to (1) Is obtained by setting the variables associated 

with the column A . equal to ß  for J ■ 1, ...» n respectively and 
• j J     " 

all the other variables In (w;z) not In this complementary set equal to zero. 

The pos cone generated by any complementary set of column vectors 

is known as a complementary cone.    Thus there are 2  complementary cones 

and the union of all these cones is the set of all q for which (1) has 

a solution. 

2.11 Any set of variables {y^ ..., 3^.1 »y*^ yj    where yr 

Is either w  or z  for each r , is known as a suboomplementary set 

of variables. The column vectors associated with a suboomplementary set 

of variables constitute a subcomplementary set of column vectors. The 

complementary pair of variables (w-.z ) is the left out complementary 

pair of variables in the subcomplementary set {y., .... y4_i»y*+j» •••» y ^ • 

2.12 An almost complementary feasible solution  is a feasible solution 

(w;z) e K(q) such that 

w z  - w1z1 for some 1 

i.e., w z - 0    for all J i* 1 , for some 1 . 

2.13 The set C. (q) is the almost complementary set  defined by 

T 
CjCq) ■ {(w;z)! (w;Z) E K(q) , w z - w^ 

i.e., w.z - 0 for j »« i) . 

where 1 is any integer from 1 to n . 

■ 



2.1A if x e R , x ^ 0 then the ray  generated by x is 

Pos {x} = {y:  y = Xx for some X > 0} . 

2.15 If x , x e R , x t 0    then the set 

2    1 {y: y e x + Xx  for some X > 0} 

2 1 
is the half-line  through x  parallel to the ray generated by x . 

2.16 The column vector q is said to be nondegenemte with respect 

to    H    ii  and only if for all  (w;z) e L(q) , at most n of the 2n 

variables {w. , z } are zero. Equivalently q is nondegenerate with respect 

to M if it does not lie in any subspace generated by (n-1) or less 

column vectors of  (I '.  -M) . Thus the set of all q which are not 

nondegenerate with respect to M belong to a finite number of subspaces 

of    R    . 

11 2    2 2.17 Two basic Teasible solutions    (w ;z )    and    (w ;z )    are said 

to be adjacent extreme points of   K(q)    if every convex combination    of 

11        2 2 
(w ;z ) and  (w ;z ) has a unique representation as a convex combination 

of extreme points of K(q) . The line segments joining any pair of adjacent 

extreme points of K(q)  is called an edge  of K(q) . 

2.18 If K(q) is nonempty and unbounded, any basic feasible solution of 

w - Mz - 0 

n      n 
Z v + J l. - 1 

1-1 1  i-1 1 

w,z > 0 

i 

is known as an extreme homogeneous solution  of (3). Any half-line through 

MM AM - ■-■■ 



a basic feasible solution In K(q) parallel through the ray generated by 

an extreme homogeneous solution of (3), lies In K(q) . Such a half-line 

is called an unbounded edge  (or extreme half-line)  of K(q) if every point 

on the half line has a unique representation as the sum of a convex combin- 

ation of basic feasible solutions of K(q) and a nonnegative linear 

combination of extreme homogeneous solutions of (3). 

2.19 Consider the set of equality constraints (2) again 

w ■ Mz + q (2) 

The 1-th constraint in this system is 

w1 - M^z + qi . (21) 

A principal pivot  in the position (1,1) in (2) consists of the following 

•teps: 

(I) Solve equation (21) for the variable z. in terms of 

« 
z., ...» 'i.i »w4 •t44.i» •••» z  an^ replace the i-th equation 

in (2) by this equation expressing z  in terms of 

(II) Substitute the expression obtained for z  in (1) in each 

of the other equations in (2). 

Thus a principal pivot in position (1,1) in (2) can only be performed if 

B.. ft 0 . The result of this principal pivot is to exchange the variables 

(w.,z.) and we get a transformed system of equations which has the same 

form as (2), but the left-hand set of variables in it differ from the left- 

hand set in (2) in one component (the i-th). However, the set of the 

complimentary pairs of variables remains unchanged as a result of a principal 

pivot. 

•» 



2.20 If a series of principal pivots are performed on the system 

(2), then it will be transformed into the system 

u = Mv + q (A) 

where each pair  (u.,v )  is a permutation of the complementary pair of 

variables  (w.,z ) .  A complementary feasible solution to (4) Is a solution 

to the system 

u = Mv + q 

u>0,v>0,u v = 0. 

(5) 

2.21 We notice that there is a one to one correspondence between 

solutions to (1) and solutions to (5).  For example, suppose (5) is 

obtained from (1) by making only one principal pivot in which w  , z 

are exchanged, say.  Then 

In 

j z solves  (1) <=> u - (z1,w2, ..., wn) , 

v ■ (w,,2., ...» z )  solves  (5) . 
i    i n 

general since u , v in (5) are such that  (u ;v )  is a permutat ion 

of the variables  (w.,z ) , we can construct a solution (ujv)  to (5) 

corresponding to each solution  (w;z)  to (1) by taking the same permutation, 

and vice versa. 

Thus the number  of solutions to (1) is invariant under principal pivots. 

2.22 Let N be a principal submatrlx of M of order s , obtained 

by striking off from M all the rows excepting the i. ^a'^    rows 

and all but the 1, i -th columns. Let 
1      s 

■i 
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and    Q. ■  (q.   »   ...,  q.   \    •    Then 
\    1 hf 

w - NC + (i 

T (i)>0,C>0,u)C"0 

Is knovm as a principal eubproblem of (1)  In the variables    iw;0   • 

2.23    Suppose     (w;z)    is a complementary feasible solution to  (1) 

such that 

(6) 

z    • 0    for all    1 1* i,    or    1_     or    1    . 1 12 8 

Let    u - jw    ,   ..., w.   J      and    5 ■ (z.   ,   ..., z.   | .    Then from the 

definition of the principal subproblem (6) we see that    (ujO    solves  (6). 

2.24 If    r    is any integer, its parity is said to be odd if    r    is 

an odd integer or even if   r    is an even integer.    When considering a set 

of integers, it is said to be of constant parity if all the numbers in the 

set have the same parity. 

2.25 A set of cones in    R     whose union is    R      is said to form a 

partition of   Rn    if each cone in the set has a nonempty interior and the 

intersection of the Interiors of any two cones in the set is empty. 

t^i. h ■ ^i _ 
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3.     FINITENESS OF THE NUMBER OF COMPLEMENTARY FEASIBLE  SOLUTIONS: 

3.1 Lemke  [7]  has shown  that  the number of  complementary  feasible 

solutions is  finite whenever    q    is nondegenerate with respect  to    M . 

Here we determine the necessary and sufficient conditions under which the 

number of solutions  to (1)  is finite for each    q e R    . 

3.2 Theorem; 

The number of complementary feasiblr solutions is finite for all 

q e R  if and only if M is nondegenerate. 

Proof; 

Suppose there exists a q e R  such that  (1)  has an Infinite 

number of distinct solutions.  Each solution to (1) represents q as a 

nonnegative linear combination of some complementary set of column vectors. 

There are only 2  distinct complementary sets of column vectors. Thus if (1) 

has an infinite number of distinct solutions, there must exist a complementary 

set of column vectors (A . , j ■ 1, ..., n} such that 

n 

I    A y - q 
j-l  3 J (7) 

y, > 0     for each j - 1, ..., n 

has an infinite number of distinct solutions.  (7) is a square system of n 

equations in n nonnegative variables.  If (7) has an infinite number of 

linearly dependent.  Since {A .}  is a complementary set of column vectors, .J 

this implies by the definition in 2.2 that M is not nondegenerate. 

1 

solutions,   then the set of column vectors    {A      , j  ■ 1,   ...,  n}    must be 
•j 

•' 
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To prove the converse, suppose M Is not nondegenerate. 

Case 1; Suppose one of the column vectors of M , say M , , is zero. 

T 
Then let q - (0,1,1, .... 1)  . Then (w;z) - (0,1,1, ..., l;a,0,0, .... 0) 

is a complementary feasible solution for any o > 0 . Thus there are an 

infinite number of distinct complementary feasible solutions when 

T 
q - (0,1,1, ..., 1)  in this case. 

Case 2; Suppose M . ^ 0 . Since M is not nondegenerate, there 

exists a complementary set of columns, say {A . , j - 1, ..., n} which 

T 
Is linearly dependent. So there exists a * (ct., ..., a ) ^ 0 such that 

J-l  ■' J 

Also A .  Is either I , or -M . and hence in this case A . i* 0 . 
• 1 »1      «1 •x 

n 
If  y A . ■ 0 , let q - A . j* 0 . Then every (w;z) obtained by 

setting the variable associated with A , equal to 1 + a , the variable 

associated with A . equal to a for j i* 1 , and all other variables in 

(w;z) equal to zero Is a complementary feasible solution for any a > 0 . 

Hence there are an Infinite number of distict complementary feasible solutions 

«hen q ■ A , i* 0 In this case. 
•1 

n n 
If  J A . ^ 0 , let q - J A  . Let 

J-l J J-l 2 

9 -   Min 
J such that 

V0 ft) 

- +• if there does not exist any a < 0 . 

So 9 > 0 . Every (w;z) obtained by setting the variable associated with 

A . equal to 1 + Xa. for j - 1, ..., n and all the other variables in 
*J J 

        . 
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(w;z) equal to zero, is a complementary feasible solution for any X such 

that 0 < A < 6 . Hence there are an infinite number of distinct complementary 
n 

feasible solutions when q« I
A
J/0 in this case. 

J-l '* 
Hence if M Is not nondegenerate there exists a q ^ 0 for which (1) 

has an infinite number of distinct solutions. This completes the proof of 

Theorem 3.2. 

3.3 Corollary; 

If    M    is not nondegenerate  there exists a    q ^ 0    for which there are 

infinite number of distinct complementary feasible solutions. 

M 
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A.     UNIQUENESS OF THE COMPLEMENTARY  FEASIBLE SOLUTION; 

4.1 We will now examine  the question of when  (1) has a unique solution 

for each    q c Rn   while   M    is fixed.    Lemke  [7], Cottle and Dantzig [1] 

have shown that  (1) has a solution if    M   is a P-matrix.    They have also 

shown that the solution is unique if   M   is positive definite.    We will 

extend these results. 

4.2 Theorem; 

If    M    is a P-matrix then  (1) has a unique solution for each 

q e R    . 

Proof; 

Proof is by induction on n . If n ■ 1 , then M ■ (m,,) and M 

Is a P-matrix => m.. > 0 . In this case q - (q.) . If q, > 0 then 

v ■ (w.) ■ (q.) and z  ■ (z.) ■ (0) is the only solution to (1). If 

q. < 0 , then w - (w.) ■ 0 and z ■ (z.) • (-q,) is the only solution 

to (1).  So the theorem is verified for n ■ 1. 

Suppose the theorem Is true for all complementarity problems of order 

1,2, ..., n-1 . We will now prove that It also holds for problems of 

order n . 

In Theorem 6 of [1] Cottle and Dantzig have proved that (1) has at 

least one solution when M is a P-matrix. Parsons has proved the same 

by using induction on n (Theorem 6.1 of [11]). Thus we need only prove 

the uniqueness of the solution. Suppose a solution to (1) is (w;z) 

where 

. 
WM 
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and 

z  > 0, ..., z  > 0 
Jl Jr 

z - 0 for all j i* j, or, ..., or j  . 

(8) 

Make a principal pivot exchanging z   and w   which Is possible because 

m. .  > 0 by the P-property of M . The result of this principal pivot 
2131 

Is another system of the same form as (1), In which the matrix M'  Is 

again a P-matrix by Tucker's theorem [15]. 

In the new system make a principal pivot exchanging z   and w 
J2      J2 

which Is possible because m! j > 0 by the P - property of M' . 
:J2J2 

Continue making principal pivots until all the original    z    ,   ...»  z 
h 3r 

are exchanged with w. , ..., w   respectively. This is possible because 
31      Jr 

after each principal pivot we get a new system In which the matrix is again 

a P - matrix by Tucker's thereom [IS] and hence has strictly positive 

elements along the principal diagonal. 

Suppose the system obtained at the end is 

u ■ Mv + q 

T 
u>0tv>0,uv"0 

(9) 

By the manner in which (9) was obtained from (1) and since (w;z) is a 

solution to (1) we note using (8) and 2.21 that (9) has a solution In which 

v « 0 . So in that solution u ■ q and since u must be nonnegative, 

q > 0 . Thus by a series of principal pivots we have transformed (1) Into 

( 9 ) in which M is a P -matrix (by Tucker's theorem D3]) and q > 0 . 

m^mm *-* 
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Since M Is a P - matrix all its principal submatrices are P- 

matrlces. Hence by the induction hypothesis all principal subproblems 

(defined in 2.22) of ( 9 ) have unique solutions.  (9) has one solution 

u-q,v-0. If (9) has another distinct solution (u*;v*) in which 

for some J , v* ■ 0 , then the principal subproblem of (9) in the 

variables (uj^ u ^u.^, ..., u^ ; v^^ vj-l,vj+r ,*', vn^ 

has two distinct solutions, namely 

and 

u - q. for e^ch 1 ^ j and v. - 0 for each i ?* j 

u. - u* for each 1 »* j and v. - v* for each i t* j 

and these two are distinct because (u*;v*) is distinct from (q;0) . 

This contradicts the induction hypothesis. 

Hence If ( 9) has another solution (u*;v*) distinct from (v;0) 

then we must have v* > 0 . By the complementarity constraint 

v* > 0 «> u* ■ 0 . Therefore 

Mv* « -q < 0 

v* > 0 . 
(10) 

This la a contradiction because by the theorem of Gale and Nikaldo 

(Theorem 1 of [6l) since   M    Is a   P-matrix. 

Mv < 0 

v > 0 
o v - 0 . 

Hence (9) has a unique solution. By 2.21 we conclude that the solution to 

(1) is also unique. 

Hence by induction, Theorem A.2 is true for all n . 

_:_ 
'■*"     i 
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It is Interesting to note that the converse of Theorem 4.2 Is also 

true.    This is proved next. 

4.3    Theorem; 

If (1) has at most one solution for each q e Rn , then M Is a 

P -matrix. 

Proof: 

Proof is by induction on n . Suppose n ■ 1 . Then M • (m,,) 

and q - (q1) . 

If mj^ - 0 , then if q - (q^ ■ 0 , (1) has several solutions, 

namely 

w - (w.) - 0 , z • (z ) for any z. > 0 . 

If Bj^ < 0 , then if q - (q^ > 0 , (1) has two distinct solutions, 

namely, 

w - (qj) , z - 0 

and 

w ■ 0 , z • 
tö) 

Thus if n - 1 , by the hypothesis of Theorem 2 m.. £ 0 . So we must 

have mj^ > 0 and hence M - (m..) must be a P-matrix, which proves the 

theorem for the case n • 1 . Suppose the theorem holds for all problems of 

order (n - 1) or less. We will now show that It also holds for problems 

of order n . 



t. 
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If (1) has at most one solution for each q e R , then every principal 

subproblem of (1), has at most one solution for any of Its right-hand side 

constant vector £ . To prove this consider the subprobleir in the variables 

T T 
ü) - (w« w ) , K m  («, O • If there exists a /      n z      n 

Q. - (q-, ..., q )T for which this principal subproblem has two distinct 

solutions, namely, Q;0    and  (or.O , choose qj^ to satisfy 

n _       n 

'I*"** 1^-2 V1^1 ' 'J^AJ1
! ' 

and let 

n _ 

'1 " ql + ^j Cjnlj * *l 

0 . Wl " ql + £2 ^  '  Zl 

If q ■ (-»--) , then (1) has two distinct solutions, namely 

-• ■ m ■ -■ ■ m 
and 

"(■M •-(■?) 
contradicting the hypothesis. 

A similar proof holds for all principal subproblems of (1) of order 

n - 1 , and by repeating the argument we see that all principal subproblems 

of (1) have at most one solution for all right-hand side constant vectors. 

Hence by the Induction hypothesis all principal submatrices of M of 

order (n - 1) or less are P-matrices. In particular m^ > 0 for all 

-^ 
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1 ■= 1,   ..., n . 

The matrix    M    Itself  should be nonsingular,   as otherwise it will not 

be nondegenerate,   in which case there exists a    q    for which  (1)  has an 

infinite number of  solutions by Theorem 3.2.     So    M        exists.    Left 

multiplying by    M        problem  (1)  can be written as 

z - M    w = Q 
T (11) 

2>0,w>0,zw-0 

where    Q ■ -M    q  . 

If  (1) has at most one solution for each    q  e R    , then (11) has at 

most one solution for each    Q e R    .    Hence by the arguments used previously, 

all principal subdeterminants of    M       of order     (n - 1)    or less are 

strictly positive.    Let    o    be the value of  the principal subdeterminant 

of    M       obtained by striking off the first row and column from   M       .    Then 

"ll ^  (12) 
determinant of M 

But a > 0 , nu. > 0 .  So by (12) the determinant of M is positive. 

Also every principal submatrix of M is a P- matrix. Hence M itself 

is a P-matrix. Hence by induction Theorem 4.3 holds for all n . 

4.4 Corollary; 

If (1) has at most one solution for each q e R  (M being fixed) 

then it has exactly one solution for any q e R  . 

4.5 Corollary: 

(1) has a unique solution for each q c R  if and only if M is 

a P -matrix. 

r • --.^i. .  .mWL.iw. iJ.HHWlMa^^gg^p^mj 
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4.6 Corollary; 

If (1) has a unique solution for each q e R , then any principal 

subproblem of (1) has a unique solution for each of its right-hand side 

constant vector. 

A.7 Note;  It is not possible to generalize Corollary 4.6 by dropping 

the condition of "uniqueness" of the solution to (1). As an example, let 

Then the problem is to solve > ■ (1.:) ■ 

T 
W>O.Z>0,W2 = 0 

In the diagram below, we indicate each complementary cone by drawing 

a dotted line segment running across its generators. 

(13) 

We see that the union of the complementary cones is the whole space, R 

2 
So by 2.10, (13) has a solution for all q e R . So M is a Q-matrix. 

Now let us examine the principal subproblem of (13) in w, , z« .  It is 

■ 

- •      — 
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w2 - (-l)z2 = q2 

w2 > 0 , z2 > 0 , w2z2 - 0 
(14) 

(1A) has no solution if q < 0 . Also we verify that M violates the 

hypothesis of Corollary 4.6 because it has three distinct Solutions for every 

q in the positive orthant. 

4.8 Thus the fact that M is a Q-matrix does not imply that its 

principal submatrices are Q-matrices. 

4.9 Note; After Theorems 4.2, 4.3 were conjectured and proved as 

described here, a theorem by Smelson, Thrall and Wesler [12] on the partition 

of R  by convex cones which is equivalent to Corollary 4.5 has come to 

our notice.  Their proof is geometric and not based on the mathematical 

programming approach. 

The property of "uniqueness" of the solution to (1) also affects the 

nature of the solution. This is discussed below. 

4.10 Theorem; 

Suppose    M    has the property that  (1)  has a unique solution for each 

q e R    .    Keep    q. q      fixed but let    q.    vary.    Let    z.Cq.)    be the 

value of    z.     in the solution to  (1)  as a function of    q.   .    Then    z.Cq.) 

is monotonic decreasing in    q.    and it is strictly monotonlc decreasing in 

the region in which it is positive. 

Proof; 

T Proof by contradiction.    Let    (^ - (q-,   ..., q )      which is held fixed. 

Pick any value for    q.    and let    ß > 0    be arbitrary.    Let     (w;z)    be the 

/ ql \ 
solution to (1) when q - I—jy-1 > (w;z) be the solution to (1) when 
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- (--4--) • Then    z^Cq-,)  " Zi     and    zi^cli + ß)  = z^  •     Let 

AA AfMAA A»« 

ü) «  (w«,   .... wn)     ,  C "  (Z2»   •••»  z
n^ 

(D   ■    (W.,    ...,   W   )        ,    £   =    (Z,,     ...,    Z   ) 

and 

m , •  (m2i»   ••*» mnl^ 

i 

I 

If    z.   > 0    we wish to show that    z-\   <  zi '    Suppose not,  then 

z.   > z.   > 0   .     By complementarity    w.   = w.   " 0  .    Then,  if 

(1) has  two solutions, namely 

and 

• ■ (f) • ■ • (t) 

-(-:-)■■■ m 
contradicting the uniqueness of the solution to (1) for each q e R . So if 

» (q ) > 0 then Zj^ + ß) < ^^^    for any ß * 0 • 

It remains to be shown that if ^^^  " 0 then zi^i + ß) " 0 for 

all 6 > 0 . Suppose not, then Zj^q^ - Zj^ ■ 0 and z^^ + S) - Zj^ > 0 . 

- |-=,~S| t  (i) has two solutions, namely Then if    q 

w ;  z    and 
-(■';■').■•(-■-) 

which is again a contradiction. 

■ .^    ■!■ 
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A. 11 We now show that if M Is a Q-matrix and (1) has a unique 

solution when q is any element of the set 

{I ,,I «,..., I  ; -M ,,..., -M } , then M is a P-matrix. 
• 1  •/       'n    •i        »n 

A.12 Theorem; 

Let 

[z.] ■ union of all complementary cones which contain ""H . as a 

generator 

[w. ] ■ union of all complementary cones which contain I . as a 

generator. 

If    I  .  ^   [2j]    and    -M  .  i  [w.]    for each   j - 1    to    n    and    M    is a 

Q-matrix,  then    M    is a P-matrix. 

Proof; 

4.13 Let N be the principal submatrix of M of order  (n - 1) , 

obtained by striking off the first row and column of M . We will now show 

that N is also a Q-matrix. 

T T 
Suppose not. Let u ■ (w- w )  and C - (z«, ..., z ) . Consider / n A n 

the principal subproblem in    (u.O   , which is to solve 

u - NC - £ 
T (15) 

« > 0 , C > 0 , w C • 0 . 

If N is not a Q-matrix there exists a Q^ c R    such that when ^ ■ ^ , 

(15) has no solution. 

Let q • (---) • If (1) has a solution (w,z) when q ■ q , then 

z. > 0 in it, as otherwise (w,C) would be a solution to (15). Thus every 



• 
mmmm 
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point on the line 

ji =", - (-|-) . - -.} 

corresponds to only complementary feasible solutions in which z1 > 0 . Since 

there are only a finite number of complementary cones and each one is convex. 

there must exist an a  such that the half-line 

{, : , . (--|-) + eitl . e > o] 

lies entirely in a complementary cone. By the above argument, in every 

complementary feasible solution corresponding to any point on this half-line 

we must have 2l > 0 . This implies that this half-line lies in a complement- 

ary cone for which -M^ is a generator. This implies that PosC.^ also 

lies in the same complementary cone. i.e.. 1^ c [^1 . which is a contradiction. 

So N must be a Q-matrix.  By a similar argument we conclude that all 

principal submatrices of M of order (n - 1) must be Q-matrices. 

4.14 Let N be the principal submatrix of M of order (n - 2) 

obtained by striking off the first two rows and columns from M . We will 

now show that N must be a Q-matrix also. 

Suppose not. Then there exists a Q z  R""2 such that the subprcblem in 

/w      w ; z, z ) has no complementary feasible solution when its 

right hand constant vector is Q . 

Let 

(16) 

Then for any X.u real. (1) has no solutions in which both z1   and z2 

k^i a   ^ 
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are equal to zero, when    q = q    by 2.23. 

A. 15    Fix    X «= X   ,  p « p.     where    X.   > 0    and    u1   > 0    and consider the 

line 

q : q , a    real) . 

Points on this line have complementary feasible solutions in which both z. 

and z» cannot be zero together. Since the number of complementary cones 

is finite and each is convex, there must exist an a      such that the entire 
* o 

half-line 

'q : q (17) 

cone 

is in a complementary cone.  Suppose this half-line is in the complementary 

Pos {I , ,-M ., A .,..., A } . Then 
• 1  • z •j      «n 

XlI.l + "l1^ e Pos{I.r-M.2'A.3 A.n} * 

Suppose 

^.l + ^.2 " »I1.! + V-11.^ + J3 V-J 

where a,,a  ..., a > 0 . 
12      n - 

If a, > ^1 » then If we put (X,u) - (0,p ) , q of (16) will have a 

complementary feasible solution in which both z. ■ z- - 0 , which Is a 

contradiction to 4.14. 

If a. < X. , then (X- - oOl* + Wi^.o lies in t ' intersection of 

Pos{-M 0,A , A } with Pos{I .,1 -} . We note that Posd -,I -} 
•2 «3      »n «1 «2 •! «2 



'im 
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cannot entirely lie in Posl-M-.A _, .... A^ } because then I , e [z.] 

and I _ E [z?] contradicting the hypothesis. So Pos{I ,,!„} and 

Pos{-M ..A ,,..., A } intersect in a half-line and when (X,VJ) -» 0 unless 
•z  •j      »n = 

\t\i    are such that 

P « y. 

X > X, - a, ■ 1   1 

we have 

XI«1 + wI-2 ^ Pos{I.l,'M.2,A.3, •••' A-n} ' 

Similarly we see that for (X,y) > 0 if \I , + yl» is contained in 

a complementary cone Pos{-M .,1 -,B .,..., B } , then XI . + yl _ must 
• 1    • z    * J ^n «i »i. 

lie on some half-line In    Pos{I ,,1 «}  . 
• 1 • c 

Hence when (X-.u,) > 0 , unless (X.I , + p,! „) lies in the union of 
ll" 1 • i   1 • Z 

a finite number of half-lines in Pos{I , ,1 -) , the half-line in (17) can •1    •/ 

only be contained in a complementary cone for which both    -M .    and    -M 0 

are generators.    This implies that all the points In    Pos {I j.I«}    excepting 

those lying on a finite number of half-lines belong to the union of all 

complementary cones containing both    -M .    and    -M^    as generators.    But 

this union is a closed cone and if it contains all points of    Pos{I ,,!»} 

excepting those lying on a finite number of half-lines,  then it contains 

all of    Pos{I «il «)  •    This Implies that    I ,     lies in some complementary 

cone which has both    -M ,     and    -M .    as generators, which is a contrailcti:r. 

to the hypothesis. 

So    N   must be a Q-matrlx.    By a similar argument we can show that 

every principal submatrlx of   M    Is a Q-matrix.    Hence all the elements in the 

principal diagonal of    M    must be strictly positive. 

i 
■ 
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From the hypothesis of the theorem we see  that every matrix   M  ,  obtained 

from   M   by performing a series of principal pivots  (as in 2.20) has the 

property that all  its diagonal elements are strictly positive. 

By Tucker's theorem  [15]   (see also Lemma 6.1 in  [11])  this implies 

that    M    is a P-matrix. 

4.16    Note;     It may be possible to use Theorem 4.12 to develop an 

efficient algorithm for testing whether a given real square matrix    M    Is 

a P-matrlx or not. 
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5.  ON THE Q- NATURE OF NONNEGATIVE MATRICES 

5.1 Suppose the square matrix M is nonnegative, i.e., m. . > 0 

for each i and J .  This case is of particular interest because the 

problem of finding a Nash equilibrium point of a bimatrix game can be 

formulated as a problem of the form (1) in which M > 0 . See [1].  It 

is of interest to know when such a matrix is a Q- matrix. The following 

theorem discusses this question. 

5.2 Theorem; 

Let M > 0 . M Is a Q-matrix if and only if m.. > 0 for each 

1*1 n . 

Proof of Sufficiency: 

This has been proved by Cottle and Dantzig [1] in a corollary under 

their Theorem 5. 

Proof of Necessity; 

Proof by „aduction. Suppose n - 1 . If M - (Oi-.) " 0 then for 

q ■ (q ) < 0 t (1) has no solution. So the theorem is verified for n * 1 

Suppose the conditions of the theorem are necessary for all problems 

of order (n - 1) or less. We will show that they are then necessary for 

n also. Let M > 0 be a square matrix of order n , with at least one 

m..    equal to zero.  Without any loss of generality we can assume that 

m-- ■ 0 . 

Consider the principal subproblem of (1) in the variables 

T T 
u - (w^ ..., w^) , C - izy   •••. zn-i)  • 

,** 
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The matrix corresponding to this subproblem Is nonnegative with a zero 

element (m.. ■ 0) in its diagonal.  So by the induction hypothesis« there 

exists a £ " (q, t •• •» q J  such that this principal subproblem of (1) 

has no solution when its right-hand side constant vector is Q .  Let 

q > 0 and q « 
^n        n (t) • When q = q « (1) has no solution because 

(I) If (1) has a solution at all, say (w ; z) then z i* 0 , since 

z - 0 implies that (u ; £) solve the principal subproblem 

contradicting the manner in which Q was obtained. 

(II) So z > 0 . But by (1) w - M z + q > 0 because 

M  > 
n« ■ 

0 , z > 0 , q 
'  -  ' nn 

> 0 . 

So if (1) has any solution at all, both w , z  must be positive in it 

which violates the complementarity constraint. 

Then (1) has no solution when q is obtained as above. So the theorem 

is true for n .  By induction, it is true for all n . 

-i 

5.3 Proof of Theorem 5.2 by Example: 

Suppose m., - 0 . Then if 

T 1 ■ (-1,1,1, ..., 1)  . 

Then using the fact that   M > 0    it is easily verified that (1)  has no 

solution when    q - q  .    This example is given by Gale. 

5.A    Corollary; 

If M > 0 and M is a Q-matrix, then all principal submatrlces of M 

are also Q-matrices. 
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6.  ON THE CONSTANT PARITY OF THE NUMBER OF COMPLEMENTARY 

FEASIBLE SOI.'uiIONF: 

6.1 We will now examine how the number of solutions to (1) varies 

as q varies over R  while M is fixed. 

6.2 Theorem: 

If    M    is nondegenerate,   then the number of complementary feasible 

solutions has  the same parity  for all    q e R      which are nondegenerate 

with respect to    M . 

Proof; 

In the proof of this theorem we will use some of the results proved 

by Lemeke in [7]. 

6.3 Results  [Lemke]; 

If    q    is nondegenerate with respect to    M 

(1)        Then (1) has a finite number of solutions when    q ■ q  . 

(li)      For each    1*1 n  ,  the almost complementary set 

C. (q)    is either empty or is the union of some edges  (bounded 

or unbounded) of    K(q)   . 

(iii)    The number of unbounded edges in    C (q)    differs from the number 

of solutions to   (1) by an even number. 

6.4 We will now prove that if    M    is nondegenerate and    q e R      then 

w.     is unbounded on every unbounded edge of     C (q)   .     Suppose    F    is an 

unbounded edge of    K(q)    contained in   C.(q)   .    Let 

F - {(w;z):   (w;z) -  (w1 + ew2  ; z1 + ez2)  ,    9 > 0} 

I 

-ii - 
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11 2 2 
where  (w ;z )  is a basic feasible solution and  (w ;z ) is av  extreme 

homogeneous solution of  K(q) . 

1    2 
Along this unbounded edge F , w = w. + 0w , and it remains bounded for 

all 6 > 0 only if w « 0 
2 ~   1 

If w « 0 , then if we put q ■ q - w I . , 

(1) has an infinite number of solutions, namely 

w=w    -w.I.+8w    ;z=z    +9z 
1  • i 

for all    0  > 0 

which is a contradiction to the hypothesis that M is nondegenerate by 

Theorem 3.2. 

Thus, on every unbounded edge of C.(q) , w.  is unbounded. 

6.5 We will now use the result obtained in 6.A to show that if 

q e R  is nondegenerate with respect to M and a Is any real number such 

that q ■ q + al .  is also nondegenerate with respect to M , then the 

number of unbounded edges in C. (q) and C (q)  are the same. 

Pick any unbounded edge 

F - {(w;z) : (w;z) - (w1 + 6w2 ; z1 + 9z2) , 6 > 0} C C^q) 

By 6.A, w. > 0 and w  is unbounded on this edge. Let 

v - Max 0 , 

1 , 
w + a 

2 
—w 

1 

Then it is easily verified that 

F1 - {(w;z)   :  (w;z) -  (w1 f 0w2 + ctl      ;  z1 + Sz2)  ,  9 > v} 

*■..... 

mtmmi 
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j 

is an unbounded e i   .. C (q) . 

Thus we have shown that there exists an unbounded edge F  in 

C.(q)  corresponding to each unbounded edge F  in C.(q) .  Conversely 

by treating q " q + (_oi)I j we can establish a correspondence between 

unbounded edges in C.(q)  and those of C. (q) .  This establishes a 

1-1 correspondence between the unbounded edges in C, (q) and those in 

C (q) . Hence both C.(q)  and C.(q) must have the same number of 

unbounded edges. 

6.6 Now to continue the proof of Theorem 6.2, let q and q be any 

two column vectors in R  both of which are nondegenerate with respect 

to M . 

By 6.5 and (i), (ili) of 6.3 we conclude that the parity of the 

number of solutions to (1) does not change if we alter the vector q one 

component at a time so that it remains nondegenerate with respect to M 

both before and after the alteration. 

It Is always possible to alter q , by one component at a time, 

retaining the property of being nondegenerate with respect to M throughout, 

until It becomes equal to q . 

Hence the number of solutions to (1) has the same parity whether 

q - q or q .  Hence the number of solutions to (1) has the same parity 

whenever q is nondegenerate with respect to M . 

6.7 Note;  The assumption that M is nondegenerate cannot be dropped 

from the hypothesis of Theorem 6.2, as can be seen from the example below. 

Let M - (J 2) '  Then (1) is t0 solve 

■ 

-'-  '    - 
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0 1 -1 -2 ^2 

Wl ' W2 ' Zl ' Z2 = 0 ' W1Z1 + W2Z2 * 0 * 
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♦ I 

q ■ (.. j leads to one solution to (1) and q > ( o) leads to two solutions 

to (1) eventhough both these are nondegenerate with respect to M here. 

Here M is not nondegenerate because the matrix (I -,-M .)  is 

singular. The argument In 6.4 falls. 

6.8 Note: The assumption that q Is nondegenerate with respect to 

M cannot be dropped from the hypothesis of Theorem 6.2 as can be seen from 

the example below.  Let M " (o i) * 

mmm 
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.2 

• • rrrr ♦   I .1 

-M .1 

When    q    is nondegenerate with respect to    M    the number of solutions to 

(1)   is an odd number, but when    q ■> -M -   ,   (1) has exactly two distinct 

solutions. 

6.9 Corollary: 

If M is nondegenerate and not a Q- matrix then the number of 

solutions to (1) is an even number for all q which are nondegenerate 

with respect to M . 

6.10 Proof; 

By 2.10, the set of all q for which (1) has a solution is the 

union of the 2  complementary cones. Each complementary cone is a closed 

set in R  and hence their union (being a union of a finite number of 

closed sets) is itself closed. The set of all q for which (1) has no 

solution is the complement of this union, and hence is an open set. Because 

M is not a Q-matrix, this open set is nonempty. So the set of all q 

for which (1) has no solution is a nonempty open cone. 

«•«" 

- 



35 

6.11 By 2.16, the set of all q which are not nondegenerate with 

respect to M is the union of a finite number of subspaces of R , each 

of which has dimension < (n-1) .  Hence the set of all q which are not 

nondegenerate with respect to M has no interior. 

6.12 By 6.10 and 6.11 we conclude that there must exist a q 

nondegenerate with respect to M , for which (1) has no solution, i.e., 

zero solutions.  Now by applying Theorem 6.2 we conclude that the number 

of solutions to (1) has the same parity as zero, i.e., even parity, whenever 

q Is nondegenerate with respect to M . 

6.13 Note; Corollary 6.9 is not necessarily true if M is not 

nondegenerate as seen from Example 6.7. 

6.14 Note: The converse of Corollary 6.9 is not necessarily true 

unless M > 0 . This is discussed in 8.17. 

•mk n. ■■ ~a 

■ 

mmmmttm 
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7.  ON PROBLEMS WITH A CONSTANT NUMBER OF COMPLEMENTARY FEASIBLE SOLUTIONS . 

7.1 Here we show that if the number of complementary feasible solutions 

is a constant for all nonzero q e R then that constant is equal to one and 

M is a P-matrix. 

7.2 Theorem; 

If the number of complementary feasible solutions is a constant for all 

q c R i q ^ 0 , then M is a P-matrix and that constant is equal to one. 

Proof; 

7.3 Whatever M may be, (1) always has at least one solution for every 

q > 0 (the solution is w - q ; z • 0) . If M is not a Q-matrix, there 

exists a q ^ 0 for which (1) has no solution at all. Hence, if M is not 

a Q-matrix then the number of solutions to (1) cannot be a constant for all 

q j* 0 .  So under the hypothesis of Theorem 7.2, M must be a Q-matrix. 

7.4 The number of complementary feasible solutions is finite whenever 

q is nondegenerate with respect to M .  By Corollary 3.3, if M is not 

nondegenerate, there exists a q ^ 0 for which (1) has an infinite number of 

solutions. 

Since the number of solutions to (1) is a constant for any q ^ 0 , M 

must therefore be a nondegenerate matrix. Hence, all the principal 

submatrices of M are also nondegenerate. Also, every subcomplementary set 

of column vectors is linearly independent and every complementary cone has a 

nonempty interior. 

7.5 Let {A , A^ _-} be any subcomplementary set of column 

vectors. We will now show that the hyperplane generated by this sub- 

complementary set of column vectors strictly separates the points 

representing the left out complementary pair of column vectors I   and 

-M  . 
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Suppose not.  Then the interiors of the complementary cones 

Pos{Ail, ..., A.JJ..!»
1
.^ 

and Pos{A  A^ .i.-M^ } have a nonempty 

intersection. 

Origin ^ 

Then we pick a pair of points    q  ,  q , both nondegenerate with respect to   M  , 
A 

sufficiently close together, such that q is in the intersection of 

Pos{A i A « I»1 „J and Pos{A ,, ..., A  .,-M } and q lies i •n-x    «n «i »n-l      «n ^ 

outside both these cones and is strictly separated from    q    by the hyperplane 

through    Pos{A A      .}  .    We can choose 
* i      »n—i 

n-l 
y A.A . + ol 

where A., ,.., A  ,a are all > 0 , a sufficiently small X X ,o 
« n~x 

are such that q is nondegenerate with respect to M and  £ X A   does 
j-1 J '* 

not lie in any subspace generated by (n - 1) or less column vectors of 

(1,-M)  excepting Pos{A , A^ _.} . By the nondegeneracy of q , 

q + * *   i« »Iso nondegenerate with respect to M for all but a finite r n 

number of values of X  . So we could pick an a > 0 sufficiently small 

such fhic 

■ ■ 
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5-1 J 2 

is ncndegenerate with respect to M for all 3 satisfying  ^ 0 . 

.a < ß < ao . So if we had chosen our original a so small that 

0 0< a < ao ^ and J is in the interior of both PosU ,. .... A.^.l.^ 

and Po8(A.1 \n-l'-
M.n} * then 

n-1 

j-1 J  ;, 

is outside both these complementary cones and q does not lie in any 

complementary cone in which q does not lie. Thus, the number of solutions 

to (1) when q ■ q is strictly less (by two) than the number when q = q , 

leading to a contradiction. 

By a similar argument, we verify that the hyperplane through any 

subcomplementary set of column vectors strictly separates the points 

representing the left out complementary pair of column vectors. 

- • ■ 
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7.6 We will now show that the principal subproblem of (1) in the 

variables (w,, ..., w . ; z., ..., z  -)  satisfies a similar seperation 
i       n—i   1      n—1 

property. The column vector corresponding to w  in this subproblem is 

the j-th column vector of the unit matrix of order  (n-1) , which we denote 

by Jl . » and the column vector corresponding to z  in this subproblem is 

T 
-(m. ,m0 m . .)  which we denote by -m . . We note that the 

J-J  ■'J      n-l,J «3 

column vectors in the subproblem are obtained by deleting the last component 

from the column vectors in the original problem. 

Let (a ■• i •••» a.j_-\ta  J+I» •••»«,  ••) be any subcomplementary set 

of column vectors in the subproblem. We want to show that the hyperplane 

in R    through these column vectors strictly separates J) .  and ~m,j • 

Let A   be the column vector corresponding to a ,r«l, ..., 1-1, 

1+1, ..., n-1 , in the original problem. Then {A ,, ..., A . -ifA ..,, 

..., A#  i»I. )  Is a subcomplementary set in the original problem.  By 

7.5 the hyperplane in R  through these column vecto'rs strictly separates 

I .  and -M  .  Suppose this hyperplane is 

DX - 0 

where D - (d., ..., d )  and X e R .  Then 

DA -  - 0 
• 1 

DA . . - 0 
•1-1 

DI .  > 0 and D(-M .) < 0 
•1 •! 

DA.i+l - 
0 

DA  . - 0 
• n-1 

DI    - 0 . 
•n 



i 

AO 

Now DI  = d = 0 .  Let  d = (d., ..., d ,) .  Because d    *-. Q      the 
•n   n 1'   * n-1 n 

above equations imply that 

da ,  =0 
• 1 

da 

dJ 

1-1 

> 0 and d(-m .) < 0 
•i 

da.i+l " 
0 

da  . - 0 . 
•n-1 

Let x - (x., ..., x _.) e R   . Thus dx ■= 0  is the hyperplane in R 

through the sub complementary set {a .., ..., a . 1 ,a i-1'   •1+1' 
a      i • n-1 } 

of the subproblem and it strictly separates    J)   .     and    -m .   . 
• i       • l 

Hence the subproblem also satisfies a similar separation property. 

By a similar argument we can verify that every principal subproblem of (1) 

of order (n-1) satisfies the separation property. 

7.7 Induction Hypothesis: 

For any complementarity problem of order    r < n-1  , with column vectors 

(It-N)   ,  If   N    is nondegenerate and if the hyperplane through every sub- 

complementary set of column vectors strictly separates the points representing 

the left out complementary pair of column vectors In the problem,  then    N 

is a P-matrix. 

7.8 The Induction hypothesis is easily verified for the case    r » 1  . 

By nondegeneracy    N ■  (m-,-,)  4 0 .    Since    r ■ 1  ,  the subcomplementary set 

is  the null set and hence the hyperplane through the subcomplementary set 

is the singleton consisting of the origin itself.    Since this separates 



41 

the points on R  representing 1 and ~m-i-t   » we should have ""jj < 0 • . 

So N = (m .) > 0 and hence is a P-matrix in this case. 

7.9 Hence by the induction hypothesis and 7.6 every principal submatrix 

of M or order n-1 is a P-matrix.  Hence all principal subdeterminants of 

M of order < n-1 are strictly positive. 

Since M is nondegenerate by 7.4, determinant of M j* 0 .  So M 

exists.  So the constraints (1) can be written as 

.-1 

z - M w = Q 

z > 0 , w > 0 
(19) 

z w 

where 

Q - -M"1q . 

If (1) has a constant number of solutions for every q e R , q / 0 , 

then (19) has a constant number of solutions for each Q e R , Q ^ 0 . 

Hence by the arguments used previously all principal subdeterminants 

of M   or order (n-1) or less are strictly positive. Let a be the 

value of the principal subdeterminant of M   obtained by striking off 

the first row and column from M  . Then 

'11 
determinant of M (20) 

But    a > 0  , m..   > 0  .    So by (20)  the determinant of    M    is also strictly 

positive.    So all principal subdeterminants of    M    are strictly positive. 

Hence    M    is a P-matrix. 

So the induction hypothesis 7.7 holds when    r • n    r.lso.    It has been 

verified for    r ■ 1    in 7.8.    So by induction it hclda for all    n  . 

Hence by 7.5, Theorem 7.2 is true for all    n . 

^ 
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8.     THE  ODD NUMBER THEOREM  FOR NONNECATIVE Q-MATRICES; 

8.1 Here we  show that   if    M    is a nonnegative  Q-natrix,   then the 

number of   complementary  feasible  solutions  is  an odd number whenever    q     is 

nondegenerate with respect  to    M  .    This  result may not  hold if    M    is not 

nonnegative. 

8.2 Theorem; 

If    M > 0    and  is a Q-matrix,   then the number of complementary feasible 

solutions   la an odd number  for any    q    nondegenerate with  respect  to    M  . 

Ptoof; 

Proof  Is by  induction on    n   . 

8.3 If    n - 1  ,   then    M «   (•m-i-l)    a^d    M    is  a Q-matrix if and only  if 

m. -   > 0    by Theorem 5.2.     Here    q ■  (q )     and  for each    q  G R      there  is 

11 

.11 - ~ *,, ...ww ....  ..... M - vHl 

exactly one complementary feasible solution. Hence Theorem 8.2 is true 

when n ■ 1 . 

8.4 Induction Hypothesis; 

Suppose Theorem 8.2  is  true  for all complementarity problems of order 

(n-1)    or less.    We will now show that this implies that Theorem 8.2 also 

holds for problems of order    n  . 

8.5 By Corollary 5.4 all principal submatrices of    M    are also Q-matrices 

Consider  f.'m   principal subproblem in    (w-,   ..., w     ;   z»,   .   .,  z )    with 
«      n   A     Q 

the right hand constants ■ Q, .  If ^ is nondegenerate in the subproblem, 

then it has an odd number of complementary feasible solutions when Q. ■ ^ , 

by the induction hypothesis 8.4. 

_.__, 
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Let    q B-) where    q    > 0  ,  be nondegenerate with respect  to    M  .' 

Since    q.   > 0    and    M > 0  ,  the variable    z..    must be equal  to zero in 

and solution to  (1)  when    q = q  .    Thus  if     (w;z)     is a solution to  (1) 

when    q * q  ,  z,   = 0    and hence     (w0,   ...,  w    ;   z. z )     is  a  complementary 
i i. n        z n 

feasible solution to the subproblem when (^ = (i . 

Also if (wi, ..., w* ; z*, ..., z*)  is any complementary feasible 

solution to the subproblem when Q. = (J , define 

n 
Wi ' ql + ^2 

mljZj >  0 

and then    (v*,w*.   ..., w*   ;  0,z*,   ....  z*)     is a  complementary feasible 

solution to tht  original  problem when    q ■ q  . 

Thus   «very compleinentary feasible solution of the original problem 

leads to a ccmplenentary feasible solution to the subproblem and vice versa. 

Hence boi.;   ■   ; jletns must have the same number of complementary feasible 

solutions.    Hence when    q ■ q  i   (1) has an odd number of solutions. 

By a similar argument we conclude that  the original problem has an 

odd number of complementary feasible solutions whenever    q    is nondegenerate 

with respect to    M    and at least one component in the vector    q    is positive. 

It only remains to be shown that the same result holds even when 

q < 0  . 

8.6    We will now show that on every unbounded edge of    K(q)     lying in 

the almost complementary set    C. (q)   , both  the variables    w      and    z. 

tend to    +• , while    z_ z      remain finite. 
z      o 

From 2.5, K(q)  is the set of all (w;z) satisfying 

wl " Ml. z + "k • 

z > 0 , w > 0 

1 ■ 1, ..., n 

(21) 

> 

tm^^mmmaämtm iwmm 
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Since    M    is a Q-matrix,    m       > 0    for all    i = 1,   .... n   by Theorem 5.2. 

Consider any unbounded edge of    K(q)   .     If all  the variables 

z.,   ...,  z      remain  finite  on this edge,   then by   (21)   all the variables 
1 n 

w,,   ..., w      also remain finite and hence  the edge cannot be an unbounded 
1 n 

edge.     Hence,  on every unbounded edge in    K(q)     at least one of the 

variables    z,,   ....   z      must  tend to    -H»  .     If     z.     tends to    +00    on this 
In i 

edge,  then from (21)  and the facts that    M > 0   , m      > 0    and    q      is 

finite and fixed,    w      must also tend tc    +co    along  this edge.    Hence  if 

any unbounded edge of    K(q)     lies in the almost complementary set    C. (q)   , 

then the variables    z,,,   ...,  z      should all remain bounded on that edge. 
2      n 

Hence z. must tend to +ao    on that edge and consequently w..  also tends 

to +0D on that edge. 

Thus on every unbounded edge in C. (q) , the variable v. ■*■+<* . 

8.7 Suppose q is nondegenerate w*,\i  respect to M . Then there exists 

an a > 0 such that for all a > a , the point q - al .  is nondegenerate 
o o * i 

with respect to M . Hence the entire half-line 

{q;q«q-al,>a> ao} (22) 

lies in the interior of a set of complementary cones. We now show that the 

number of complementary cones in which this half-line lies is precisely the 

number of unbounded edges in C.(q) . Let 

F - {(w;z) : (w;z) - (w1 + Qw2;«1 + 6z2) , 6 > 0} 

be an unbounded edge in C. (q) . Then 

(«i *«*<)■ for all i »* 1 

for all 9 > 0 

and w. > 0 by 8.6. Hence 

•- 

■ -ilr 
I^^M 
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(12 1212 12\ 
0,w2+0w2,   .... wn+ewn   ;   2^9Zj^,   ...,  ^+9^/ 

is a complementary feasible solution for 

q - q - (wj + ÖWi)1.!       for a11 6 > 0 

and since w.. > 0 , as 6 varies from 0 to » 

|q : q « q - (wj + Ow^I^ , 6 > o} 

is eventually  the same half-line as  in  (22). 

Also for any    a > a    , q - al ,     cannot lie in any complementary cone 

which has    Pos{I ,}    as a generator.     For,   if it does,  there exists a 

subcomplementary set of columns     tB B^   }    such that 

q - Si .  - X.I .  +    I    X.B , n «1 1  »1       >-     1   •! 

for some X,, .... X > 0 . Then q - (a + X.)I . lies in the subspace 
In" 1 •! 

through the subcomplementary set {B-, ..., B } contradicting the 

assumption that q - ol . is nondegenerate with respect to M for all 

a > a o 

Hence if the half-line in (22)  lies in some complementary cone,  say, 

Pos{A ,,A .,..., A    }    then   A ,,   ..., A        must be linearly independent 
•1    • £. «n •! *n 

and    A ,  - -M .   .    Then we can express this half-line as 
•1 '1 

|q  :  q - J^A^ + (a - ao)  J^JA^  . « > CXO| 

1        2 
for some    6     ,  ß    > 0 .    Thus 

1 

1 

~> 
' 

■ - ■ mm^^mä 
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n 
q  = cxl      +    l ßjA      +  (a -  a  )     l ß^A 

1=1 1«1 1 
(23) 

- 

i 

for any    a > a 

r    r 12 Suppose     (w  ;z  )     is obtained by setting    w.  = a     , w    « 1   ,  and  the 

variable associated with the column vector    A  .    equal to    6.   ,   i * 1 n 

and all the other variables in    (w;z)     equal  to zero,  for    r =  1,2   .     Then 

(22)  implies  that 

F - {(w;z)   :   (w;z) «=   (w    + Ow     ;   z1 + Bz )   ,  6 > 0} 

is an unbounded edge in C.(q) . 

Thus every unbounded edge in C.(q)  gives raise to a complementary 

cone in the interior of which the half-line in (22) lies and vice versa. 

Hence the number of unbounded edges in C. (q)  is equal to the number of 

complementary feasible solutions for q - ol . where a is a sufficiently 

large number. 

8.8 Thus for any q.. such that q ■ (q-.q^, .... q )   Is nondegenerate 

with respect to M , the number of unbounded edges in C. (q)  Is a constant. 

This number is equal to the number of complementary cones in which the half- 

line (22) eventually lies as a  is made large. 

8.9 By the nondegeneracy of q. we know that there exists a 8  such 

that for all ß > ß  , (ß.q, q )  is nondegenerate with respect to M . 

" T 
Hence we can always pick a q* > 0 such that q* ■ (qf.q-, ..., q )  is 

nondegenerate with respect to M . Since q* > 0 , the number of complementary 

feasible solutions when q ■ q* is an odd number. Therefore by 6.3(iii) the 

number of unbounded edges in C. (q*)  is an odd number and hence by 8.8 the 

number of unbounded edges i:.i C1(q)  is an odd number.  By 6.3(iii), the 

number of complementary feasible solutions when q ■ q is therefore an odd 

number. 

■ 

„- —k...,. „t. .^~^-^„. - ■ -h «h 
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Hence under the Induction hypothesis, Theorem 8.2 holds for the original 

problem of order n .  By 8.3 and by induction. Theorem 8.2 is true for all' n . 

8.10 Corollary; 

If M Is a Q-matrix and if there exists a complementary set of column 

vectors  tA ,, ..., A^ } which is linearly independent, such that each of 

the remaining vectors B  , ..., B^   among the column vectors of (I,-M) 

satisfies 

B . e Pos{-A ., ..., -A^ }      for all J - 1, ..., n 

then the number of complementary feasible solutions is an odd number for all 

q which are nondegenerate with respect to M . 

Proof; 

Transform the column vectors    A ,,   ..., A        into the column vectors of • i «n 

the unit matrix by making the necessary principal pivots.    Then Corollary 

8.10 follows  from Theorem 8.2 and 2.21. 

8.11 In the special case when    n « 2,  the restriction that   M > 0    can 

be removed from the hypothesis of Theorem 8.2.    This is discussed below. 

8.12 Theorem: 

If    n - 2    and   M    Is a Q-matrlx then the number of complementary 

feasible solutions is an odd number whenever    q    Is nondegenerate with respect 

to    M . 

Proof; 

8.13 Case 1: If Pos{-M , ,-M«} is a subset of the nonpositive orthant 

2 
of R , Theorem 8.12 follows from Theorem 8.2. 

8.14 Case 2; If Pos{-I . .-I,} C Pos{-M . ,-M .} the hypothesis that 

M Is a Q-matrix implies that ~M .  and -M 2 are contained one each in 

Pos {I ,,-!„} and Pos{-I .,1«} respectively. 

■M MM 
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- 

We verify that in this case the number of complementary feasible solutions 

is 1 or 3 for every q nondegenerate with respect to M . 

8.15 Case 3;  Since M is a Q-matrix, the only other possibility is 

that exactly one of -M   or -M   is contained in the Interior of 7 -1      '2 

Pos{-I  ,-I  } .  Suppose it is -M  .  Then the hypothesis that M is a 
•1  •2 «1 

Q-matrlx implies that either -M o e Pos{I ,,M .} ox    -M>2 e Pos(1^,-1^ 

♦ I .1 

J 
*-■ 

In either case we verify that the number of complementary feasible solutions 

Is either 1 or 3 for all    q    nondegenerate with respect to    M . 

' 

- '     -■■i 
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8.16 Corollary: 

If    n = 2  ,  there exists a    q    nondegenerate with respect to    M  ,  for 

which  the number of complementary feasible solutions  is at most one. 

8.17 Note;    When    n >  3   ,  Theorem 8.2 is not necessarily true if 

M i 0  ,  and Corollary 8.16 may not be true. 

As  an example consider 

/-I      2      2\ 
M - (   2    -1      2     . 

\  2      2-1/ 

It can be shown that this is a Q-matrix by verifying that the union of all 

3 
the 8 complementary cones is    R    .    Also   M    is a nondegenerate matrix.    We 

T verify  that    q -  (1,1,1)       is nondegenerate with respect  to    M .    When    q ■ q 

there  are  four distinct complementary feasible solutions,  because    q    lies 

in each of the complementary cones    Pos{I i'^.o^.s^   »  ^os^"^.i,^.2,^3^   • 

Pos{I  , ,-M .,1 ,}    and    Pos{I , ,1 «,-M ,}    and in none of the others. 

By Theorem 6.2,  the number of complementary feasible solutions is an 

even number for all    q    nondegenerate with respect to    M  , and since    M    is 

a Q-matrix, this number must be    > 2 . 

This shows that the converse of Corollary 6.9 is not necessarily true 

unless    M > 0 . 

8.18   Note;    When    n > 3  ,  the number of complementary feasible solutions 

can be    > 2    for all    q e R    .    The example in 8.17 shows this.    Thus when 

n > 3    the complementary cover can span the whole space more than twice 

around. 
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